
Web Architecture
Layers, Languages, Protocols

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2021/2022



2

Goal

• Understand what is the Web and its architecture

– main (logical) components

– main network protocols

– existing architectural patterns and languages

• Know the interaction and communication across components

• Learn the basics of how a browser works

• NOTE: All the topics mentioned here will be presented in more details in 
the next lectures

Applicazioni Web I - Web Applications I - 2021/2022



3

Applicazioni Web I - Web Applications I - 2021/2022



4

Browsers

HTML 5, CSS, JavaScript,
DOM, Events

Applicazioni Web I - Web Applications I - 2021/2022



5

Browser

Browser The HTML file might link to other resources (images, videos, …)
as well as JavaScript and CSS files,
which the browser then also loads

These are stored or generated by a server

Applicazioni Web I - Web Applications I - 2021/2022



6

Quick Introduction to HTML

https://developer.mozilla.org/docs/Learn/HTML/

Introduction_to_HTML

Applicazioni Web I - Web Applications I - 2021/2022

https://developer.mozilla.org/docs/Learn/HTML/Introduction_to_HTML


7

Browser

Browser The content of the web page is described by HTML+CSS.

Clicking on a link brings the user to a new page.
Interacting with other elements may generate Events inside the browser.

Such Events are “captured” by JavaScript and may update the page content.

Interact with page
elements (forms, 
buttons, links, …)

Applicazioni Web I - Web Applications I - 2021/2022



8

Conceptual Browser Architecture (from 10,000 feet)
• User Interface: the address bar, back/forward button, 

bookmarking menu, etc. Every part of the browser display 
except the window where you see the requested page

• The Browser Engine marshals actions between the UI and the 
rendering engine

• Rendering Engine: responsible for displaying the requested 
content. For example, if the requested content is HTML, the 
rendering engine parses HTML and CSS, and displays the parsed 
content on the screen

• Networking: for network calls such as HTTP requests, using 
different implementations for different platform behind a 
platform-independent interface

• UI Backend: used for drawing basic widgets like combo boxes 
and windows. This backend exposes a generic interface that is 
not platform specific. Underneath it uses operating system user 
interface methods

• JavaScript Interpreter: used to parse and execute JavaScript 
code

• Data Persistence: a persistence layer. The browser may need to 
save all sorts of data locally, such as cookies. Browsers also 
support storage mechanisms such as LocalStorage, IndexedDB, 
WebSQL and FileSystem

Applicazioni Web I - Web Applications I - 2021/2022



9

Browser Development tools

Applicazioni Web I - Web Applications I - 2021/2022



10

Document Object Model (DOM)

• Standard data structure for 
representing the web page content

• Allows to get, change, add, or 
delete HTML elements

• Supported by all browsers 

• JavaScript programs can read and 
modify the DOM

• Abstracts and standardizes APIs to

– Browser

– HTML

"The W3C Document Object Model 
(DOM) is a platform and language-
neutral interface that allows programs 
and scripts to dynamically access and 
update the content, structure, and 
style of a document."

Applicazioni Web I - Web Applications I - 2021/2022



11

Cascading Style Sheets (CSS)

• Allow the definition of complex layouts

• Adapt web pages to 

– different resolutions

– different devices (e.g., smartphones)

– different preferences (e.g., color schemes)

– to different media (e.g., text vs. video)

– in a standard way

Applicazioni Web I - Web Applications I - 2021/2022



12

Cascading Style Sheets (CSS)

• A set of "declarations" applied to some "selectors"

– Selectors identify portions of the DOM

– Declarations set the value of some properties

– Properties control everything
• color, size, font, alignment, border, shadow, position, selection status, transitions, links, 

buttons, cursors, …

Applicazioni Web I - Web Applications I - 2021/2022



13

JavaScript

• JS Interpreter Embedded in the Browser

– Executes within a strict “sandbox”

• JS Scripts loaded by the HTML page

– <script src="/js/myscript.js" 
type="text/javascript"></script>

• JS Scripts have read-write access to

– Browser API

– HTML DOM (including form data)

– User events and actions

Applicazioni Web I - Web Applications I - 2021/2022



14

HTTP Protocol

URI, HTTP methods, JSON data

Applicazioni Web I - Web Applications I - 2021/2022



15

HTTP protocol

GET / HTTP/1.1
Host: www.polito.it
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Connection: keep-alive
Cookie: __utma=55042356.701936439.1606736391.1615238467.1615289682.230; __utmz=55042356. [...]
Upgrade-Insecure-Requests: 1
Pragma: no-cache
Cache-Control: no-cache

RFC 2616, RFC 2617

http://www.w3.org/Protocols

Applicazioni Web I - Web Applications I - 2021/2022

HTTP Request



16

HTTP protocol

GET / HTTP/1.1
Host: www.polito.it
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:86.0) Gecko/20100101 Firefox/86.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Connection: keep-alive
Cookie: __utma=55042356.701936439.1606736391.1615238467.1615289682.230; __utmz=55042356. [...]
Upgrade-Insecure-Requests: 1
Pragma: no-cache
Cache-Control: no-cache

RFC 2616, RFC 2617

http://www.w3.org/Protocols

Applicazioni Web I - Web Applications I - 2021/2022

HTTP Request

HTTP/1.1 200 OK
Date: Tue, 09 Mar 2021 14:21:35 GMT
Server: Apache
Strict-Transport-Security: max-age=31536000
Content-Security-Policy: script-src 'self' 'unsafe-inline' 'unsafe-eval' [...] 
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Referrer-Policy: no-referrer-when-downgrade
Feature-Policy: accelerometer 'none'; camera 'none'; geolocation 'none’; [...]
Last-Modified: Tue, 09 Mar 2021 14:03:41 GMT
Cache-Control: no-cache, must-revalidate
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 11905
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="it">
<head>

<meta charset="UTF-8">
<title>Politecnico di Torino</title>

. . .

HTTP Response

Header

Blank line

Body



17

HTTP Response Body

Generation

• Empty Response Body
– Errors

• Static file (exists in the server)
– HTML (seldom)

– Images, JavaScript, CSS, …

• Dynamically generated on-the-fly 
by the server
– HTML (generated with templates)

– JSON data

File and Content Type

• HTTP does not care about the 
meaning of the payload

• Web content
– HTML, CSS, JS

– Used by the browser

• Data content (API)
– JSON, XML, binary data, …

– Used by JavaScript code

Applicazioni Web I - Web Applications I - 2021/2022



18

Dynamic Web Transaction

Client

Web Server

URL
and data

HTTP request
with data

HTTP responsedisplay
page

TCP/IP

comm
and

browser server application

send
HTML

parameters

logic

Applicazioni Web I - Web Applications I - 2021/2022



19

HTTP Methods

Applicazioni Web I - Web Applications I - 2021/2022

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods


20

Web Server

Serving pages, Serving files, 
Executing (REST) APIs

Applicazioni Web I - Web Applications I - 2021/2022



21

Web Server

• A web server delivers web resources in response to a request

– manages the HTTP protocol to handle requests and provide responses

• It either reads or generates a web page

– receives client requests

– reads static page from the filesystem 

– asks the application server to generate dynamic pages (server-side)

– provides a file (HTML, CSS, JS, JSON, …) back to the client

• One HTTP connection for each request

• Multi-process, multi-threaded or process pool

Applicazioni Web I - Web Applications I - 2021/2022



22

Web Server

Source: http://news.netcraft.com/

https://news.netcraft.com/archives/2021/02/26/february-2021-web-server-survey.html

Applicazioni Web I - Web Applications I - 2021/2022



23

Web Server

Source: http://news.netcraft.com/

https://news.netcraft.com/archives/2021/02/26/february-2021-web-server-survey.html

Applicazioni Web I - Web Applications I - 2021/2022



24

Web server with Node.js

• Node.js provides a module ‘http’ that implements a basic web server

• Express: a simple and extensible web server, easy to extend with many 
available extensions - http://expressjs.com/

• Other alternatives:

– Fastify: focuses on performance

– Koa: by Express authors, simplifies callbacks using ‘ES6 generators’ (yield instruction)

– Meteor: full-stack, more complex and complete, also with a client-side component to 
synchronize state

– Sails.js: based on MVC+ORM principles

– … many more

Applicazioni Web I - Web Applications I - 2021/2022

http://expressjs.com/


25

Persistence Layer

Databases (SQL / NoSQL)

Applicazioni Web I - Web Applications I - 2021/2022



26

ARCHITECTURAL PATTERNS
Web Architecture

Applicazioni Web I - Web Applications I - 2021/2022



27

• The "Rich-Client" is the "traditional" approach, now

• The server sends a new HTML page for each request it receives

– with related resources (i.e., images, CSS, …)

– some parts of those pages can be, then, dynamically updated with 
asynchronous JavaScript requests

• A web application is doing server-side rendering, and a multi-page

web application is created

"Traditional" Architectural Pattern

Applicazioni Web I - Web Applications I - 2021/2022



28

All The Layers At Work…

Applicazioni Web I - Web Applications I - 2021/2022

command

web server application
server

send

parameters

logic

HTML/JSON/…

Client
Web Server

URL
and data

HTTP request
(with data)

HTTP response

display
page

TCP/IPbrowser

Database Server

data

query
(SQL)

database

Client-side app
(JavaScript)

runtime

DOM

JSON data

Data request



29

Modern Patterns

Other three patterns to architect a web application exist, roughly

1. Single-Page Application (SPA)

– the server sends the exact same web page for every unique URL

– the page runs JavaScript to change the content and the aspect

– by querying another (logical) server which provides "raw" information

Applicazioni Web I - Web Applications I - 2021/2022



30

Single-Page Application

• An evolution of the "traditional" 
approach

– JavaScript starts with an (almost 
empty) HTML

– add all the content dynamically

– instead of asking for data to update 
some parts of a well-formed page

• Goal: to serve an outstanding User 
Experience with no page reloading 
and no extra time waiting

• Examples: Google Docs, Trello

Browser

Application server

Business services, 
data, …

Web Server (logic)

Async JS engine

User Interface

HTTP
requests

UI fragments,
JSON data, …

Browser

Application server

Business services, 
data, …

SPA engine

User Interface

HTTP
requests

JSON data

"Traditional" SPA

Applicazioni Web I - Web Applications I - 2021/2022



31

SPA: Disadvantages

• Search Engine Optimization (SEO) is hard
– Google launched a new scheme to increase single-page app SEO optimization, but 

this means extra work for the developer

• Browser history is not working
– Web History API exists to tackle this problem and to allow a developer to emulate 

the back and forth action

• Security issues
– Given that "all the logic is in the client", special care should be taken when 

handling access control. Cross-Site Scripting (XSS) is a problem as well.

• Client-side rendering can be slow!

Applicazioni Web I - Web Applications I - 2021/2022



32

Modern Patterns

Other three patterns to architect a web application exist, roughly

1. Single-Page Application (SPA)

– the server sends the exact same web page for every unique URL

– the page runs JavaScript to change the content and the aspect

– by querying another (logical) server which provides "raw" information

2. Isomorphic Application

– Combination of SPA with server-side rendering

3. Progressive Web App (PWA)

– Web applications that emulate "native" apps

Applicazioni Web I - Web Applications I - 2021/2022



33

Supporting mobile development

http://blog.octo.com/en/new-web-application-architectures-and-impacts-for-enterprises-1/

Applicazioni Web I - Web Applications I - 2021/2022

http://blog.octo.com/en/new-web-application-architectures-and-impacts-for-enterprises-1/


34

Client-side, server-side, databases

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

Applicazioni Web I - Web Applications I - 2021/2022

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites


35

References

• HTTP/1.x vs. HTTP/2 – The Difference Between the Two Protocols Explained -
https://cheapsslsecurity.com/p/http2-vs-http1/

• How Browsers Work: Behind the scenes of modern web browsers -
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

• Inside look at modern web browser

– Part 1: https://developers.google.com/web/updates/2018/09/inside-browser-part1

– Part 2: https://developers.google.com/web/updates/2018/09/inside-browser-part2

– Part 3: https://developers.google.com/web/updates/2018/09/inside-browser-part3

– Part 4: https://developers.google.com/web/updates/2018/09/inside-browser-part4

Applicazioni Web I - Web Applications I - 2021/2022

https://cheapsslsecurity.com/p/http2-vs-http1/
https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/
https://developers.google.com/web/updates/2018/09/inside-browser-part1
https://developers.google.com/web/updates/2018/09/inside-browser-part2
https://developers.google.com/web/updates/2018/09/inside-browser-part3
https://developers.google.com/web/updates/2018/09/inside-browser-part4


36

License

• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0)”

• You are free to:
– Share — copy and redistribute the material in any medium or format 
– Adapt — remix, transform, and build upon the material 
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were 

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or 
your use. 

– NonCommercial — You may not use the material for commercial purposes. 
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions 

under the same license as the original. 
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict 

others from doing anything the license permits. 

• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2021/2022

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

