
React Life Cycle
Making React Components Alive

Fulvio Corno

Luigi De Russis

Enrico Masala

Applicazioni Web I - Web Applications I - 2021/2022

2

COMPONENTS’ LIFECYCLE
There’s life before and after return<JSX>

Applicazioni Web I - Web Applications I - 2021/2022

https://reactjs.org/docs/state-and-lifecycle.html

https://reactjs.org/docs/react-component.html

https://github.com/Wavez/react-hooks-lifecycle

Full Stack React, Chapter “Advanced Component
Configuration with props, state, and children”

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/react-component.html
https://github.com/Wavez/react-hooks-lifecycle

3

Lifecycle Events

• The render action is the most important one for a component
• However, it is also useful to customize what happens at different

moments in the evolution of the component

Applicazioni Web I - Web Applications I - 2021/2022

Mounting Updating Unmounting

The component is being
created and inserted into

the DOM

The component is being re-
rendered

The component is being
removed from the DOM

4
Applicazioni Web I - Web Applications I - 2021/2022

5

Side Effects in Function Components

• A functional React component uses props and state to calculate its output
• Side effect: any calculation that do not target the output values, anything that

affects something outside the scope of the function component being executed
• Examples of side effects:

– Data fetching
– Log recording
– Setting up a subscriptions (handlers, etc.), or removing them
– Scheduling additional actions when some state values change
– Manually changing the DOM in React components
– Managing timeouts and interval timers
– …

Applicazioni Web I - Web Applications I - 2021/2022

6

Side Effects in Function Components

• A functional React component uses props and state to calculate its output
• Side effect: any calculation that do not target the output values, anything that

affects something outside the scope of the function component being executed
• Examples of side effects:

– Data fetching
– Log recording
– Setting up a subscriptions (handlers, etc.), or removing them
– Scheduling additional actions when some state values change
– Manually changing the DOM in React components
– Managing timeouts and interval timers
– …

Applicazioni Web I - Web Applications I - 2021/2022

The component rendering and side-effect logic
are independent.

It would be a mistake to perform side-effects
directly in the body of the component.

7
Applicazioni Web I - Web Applications I - 2021/2022

No side effects
in the render phase

8
Applicazioni Web I - Web Applications I - 2021/2022

No side effects
in the render phase

Side effects run after
rendering and DOM
updating

9

USEEFFECT HOOK
Side-effects and Life Cycle in Functional Components

Applicazioni Web I - Web Applications I - 2021/2022

Full Stack React, “Appendix C: React Hooks”

React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-effect.html

https://dmitripavlutin.com/react-useeffect-
explanation/ (source for many examples)

https://reactjs.org/docs/hooks-effect.html
https://dmitripavlutin.com/react-useeffect-explanation/

10

No Side Effects in Render Function

Applicazioni Web I - Web Applications I - 2021/2022

function GreetBAD(props) {
const message = `Hello, ${props.name}!`;
// Calculates output

// Bad!
console.log(`Greetings: ${message}`); // Side-effect!

return <div>{message}</div>; // Calculates output
}

import {useEffect} from "react";

function Greet(props) {
const message = `Hello, ${props.name}!`;
// Calculates output

useEffect(() => {
// Good!
console.log(`Greetings: ${message}`); // Side-effect!

}, []);

return <div>{message}</div>; // Calculates output
}The side effect will be executed

when React decides to [re-]render.

Never? Once? Twice? When?

Rendering is under React control

Side effects are confined within a
useEffect hook.

The hook controls their execution

11

How To useEffect

• useEffect(callback, [dependencies])

– callback: function containing side-effect logic
– useEffect executes the callback function after React has committed the

changes to the screen

– [dependencies]: an optional array of dependencies
– useEffect executes callback only if at least one of the dependencies have

changed between renderings

Applicazioni Web I - Web Applications I - 2021/2022

Very “dense” API

What to execute When to execute it

12

useEffect’s Dependency Array

• Not provided: the side-effect runs after every rendering

• An empty array []: the side-effect runs once after the initial rendering

• Has props or state values [prop1, prop2, ..., state1,
state2]: the side-effect runs once after the initial rendering, then only
when any dependency value changes

Applicazioni Web I - Web Applications I - 2021/2022

13

useEffect’s Dependency Array

• Not provided: the side-effect runs after every rendering

• An empty array []: the side-effect runs once after the initial rendering

• Has props or state values [prop1, prop2, ..., state1,
state2]: the side-effect runs only when any dependency value changes

Applicazioni Web I - Web Applications I - 2021/2022

14

useEffect’s Dependency Array

• Not provided: the side-effect runs after every rendering

• An empty array []: the side-effect runs once after the initial rendering

• Has props or state values [prop1, prop2, ..., state1,
state2]: the side-effect runs only when any dependency value changes

Applicazioni Web I - Web Applications I - 2021/2022

15

useEffect’s Dependency Array

• Not provided: the side-effect runs after every rendering

• An empty array []: the side-effect runs once after the initial rendering

• Has props or state values [prop1, prop2, ..., state1,
state2]: the side-effect runs only when any dependency value changes

Applicazioni Web I - Web Applications I - 2021/2022

16

Side Effects At Mount Time / Update Time

Applicazioni Web I - Web Applications I - 2021/2022

function Count(props) {

useEffect(()=>{ console.log(`My static number is ${props.num}`)}, []) ;
// run only once

useEffect(()=>{ console.log(`My dynamic number is ${props.num}`)}, [props.num]) ;
// run at every change

return <div>{props.num}</div> ;
}

Only when the component is
mounted.

Will print the initial value of the
num, only.

At mount time, plus every time
the num changes.

Will print all the values.

My static number is 3 Count.js:5
My dynamic number is 3 Count.js:8
My dynamic number is 4 Count.js:8
My dynamic number is 5 Count.js:8
My dynamic number is 6 Count.js:8
My dynamic number is 7 Count.js:8
My dynamic number is 8 Count.js:8
My dynamic number is 9 Count.js:8
My dynamic number is 10 Count.js:8

<Count num={num}/> <button onClick={()=>setNum(i=>i+1)}>+</button>

17

Side Effects At Mount Time / Update Time

Applicazioni Web I - Web Applications I - 2021/2022

function Count(props) {

useEffect(()=>{ console.log(`My static number is ${props.num}`)}, []) ;
// run only once

useEffect(()=>{ console.log(`My dynamic number is ${props.num}`)}, [props.num]) ;
// run at every change

return <div>{props.num}</div> ;
}

My static number is 3 Count.js:5
My dynamic number is 3 Count.js:8
My dynamic number is 4 Count.js:8
My dynamic number is 5 Count.js:8
My dynamic number is 6 Count.js:8
My dynamic number is 7 Count.js:8
My dynamic number is 8 Count.js:8
My dynamic number is 9 Count.js:8
My dynamic number is 10 Count.js:8

<Count num={num}/> <button onClick={()=>setNum(i=>i+1)}>+</button>

TIMELINE

• Component Count is created (num=3)
and mounted in App

• Function Count is called
• useEffects are registered (not

executed)
• The JSX is returned (with 3)
• Component just mounted => run 1st

effect
• Component just mounted => run 2nd

effect
• …
• User clicks, App updates state, num

changes to 4
• Function Count is called for re-

rendering (num=4)
• The JSX is returned (4)
• props.num changed (prev=3,

curr=4) => run 2nd effect
• …

18

useState Meets useEffect

• A state variable may be listed as a dependency in an effect
– When the state changes, the effect is run
– If the state is updated, but the value does not change, the effect is not run

• Inside a useEffect function, you may schedule a state update
– The state will be updated after the effect is finished (asynchronously)
– If the state value changes, the component is re-rendered

Applicazioni Web I - Web Applications I - 2021/2022

19

useState Meets useEffect

Applicazioni Web I - Web Applications I - 2021/2022

function QuickGate(props) {
const [open, setOpen] = useState(false) ;

useEffect(()=>{
setTimeout(()=>setOpen(false), 500)

}, [open]) ;

const openMe = () => {
setOpen(true) ;

} ;

return <div onClick={openMe}>
{open ? GO : STOP}

</div> ;
}

TIMELINE

• Component QuickGate is created and mounted in App
• Function QuickGate is called
• useState creates state open with default value
• useEffect is registered (not executed)
• The JSX is returned (STOP)
• Component just mounted => run effect

• setTimeout is executed: Timeout is set
• Timeout expires
• setOpen is executed
• State open becomes false => no change
• …
• User clicks
• openMe callback is called

• setOpen(true) executed
• State open becomes true
• Component re-renders
• The JSX is returned (GO)
• useEffect finds open changed (from false to true)

• setTimeout is executed: Timeout is set
• …
• Timeout expires

• setOpen is executed
• State open becomes false
• Component re-renders
• useEffect finds open changed (from true to false)
• …

20

useEffect Optional Array Caveats

• Make sure the array includes all values from the component scope (such
as props and state) that change over time and that are used by the effect

• Otherwise, your code will reference stale values from previous renders
– Rule: every value referenced inside the effect function should also appear in the

dependencies array
• arguments of the functions
• variables (and functions) accessed through closure

• If the array includes variables that always change when executing the
effect, you risk having an infinite loop

Applicazioni Web I - Web Applications I - 2021/2022

21

useState & useEffect Meet fetch
• useEffect() can perform data

fetching side-effect
• When props.query changes,

the effect is run
– Also at the first component

mount
• fetchEmployees fetches data

from the server
• When the response is

available, the employees
state is updated
– Component will re-render

Applicazioni Web I - Web Applications I - 2021/2022

22

⚠Note⚠

• The callback argument of
useEffect(callback) cannot be an
async function.

• But you can always define and
then invoke an async function
inside the callback itself
– Inside the function, you may then

use await

Applicazioni Web I - Web Applications I - 2021/2022

23

Example

Applicazioni Web I - Web Applications I - 2021/2022

import {useEffect, useState} from "react";

function TextFlipper(props) {
const [text, setText] = useState('') ;
const [flipped, setFlipped] = useState('') ;

useEffect(()=>{
const fetchFlipped = async () => {

const response = await fetch('/flip?text='+text) ;
const responseBody = await response.json() ;
setFlipped(responseBody.text) ;

};
fetchFlipped(text) ;

}, [text]) ;

const handleChange = (ev) => {
setText(ev.target.value) ;

} ;

return <div>
Text: <input type='text' value={text} onChange={handleChange}/>

Flipped: {flipped}

</div> ;
}

const express = require('express') ;
const flip = require('flip-text') ;

const app = express() ;

app.get('/flip', (req, res) => {
const text = req.query.text ;
const flipped = flip(text) ;
res.json({text: flipped}) ;

});

app.listen(3001, ()=>{console.log('running')})

24

Handling Slow Responses

• If HTTP API calls are slow, you can
use an extra state to remember
whether a call is still ongoing (or
if it is been answered)

• The Effect will initially set it to
‘waiting’, and when the response
is back, it may be reset to ‘not
waiting’

• The component rendering will
show in some way that the result
is still temporary

Applicazioni Web I - Web Applications I - 2021/2022

function TextFlipper(props) {
const [text, setText] = useState('') ;
const [flipped, setFlipped] = useState('') ;
const [waiting, setWaiting] = useState(true) ;

useEffect(()=>{
const fetchFlipped = async () => {

const response = await fetch('/flip?text='+text) ;
const responseBody = await response.json() ;
setFlipped(responseBody.text) ;
setWaiting(false);

};
setWaiting(true) ;
fetchFlipped(text) ;

}, [text]) ;

const handleChange = (ev) => {
setText(ev.target.value) ;

} ;

return <div>
Text: <input type='text' value={text} onChange={handleChange}/>

Flipped: {waiting && 🕗}{flipped}

</div> ;
}

25

Clean-up After Side Effects

• Some side-effects need cleanup: close
a socket, clear timers

• If the callback returns a function, then
useEffect() considers this as an
effect cleanup:

• Cleanup works in the following way:
– After initial rendering, useEffect()

invokes the callback having the side-effect.
cleanup() function is not invoked.

– On later renderings, before invoking the
next side-effect callback, useEffect()
invokes the cleanup() function from the
previous side-effect execution (to clean up
everything after the previous side-effect),
then runs the current side-effect.

– Finally, after unmounting the component,
useEffect() invokes the cleanup()
function from the latest side-effect.

Applicazioni Web I - Web Applications I - 2021/2022

26

Summary: Four Ways To Call useEffect

• Once, when the component mounts
– useEffect(() => callOnce(), []) // empty 2nd arg

• On every component render
– useEffect(() => callAtEveryRender()) // missing 2nd arg

• On every component render, if some values changed
– in addition, it is called when the component mounts
– useEffect(() => callIfAnyDepChange(dep1,dep2), [dep1,dep2])

• When component unmounts
– useEffect(() => { doSomething();

return ()=>cleanupFunction(); }, [])

Applicazioni Web I - Web Applications I - 2021/2022

https://dev.to/spukas/4-ways-to-useeffect-pf6

https://dev.to/spukas/4-ways-to-useeffect-pf6

27

How To Handle Other Lifecycle Situations

• Full lifecycle is more complex
• Other hooks available for particular

situations
– useLayoutEffect: it fires

synchronously after all DOM mutations
– useMemo: returns a memoized value

(re-computed by a pure function when
its parameters change)

– useCallback: returns a memoized
callback function

• Not recommended in general

Applicazioni Web I - Web Applications I - 2021/2022

28

HANDLING API CALLS IN REACT
React as an API Client

Applicazioni Web I - Web Applications I - 2021/2022

https://www.robinwieruch.de/react-fetching-
data

The Road to Learn React, Chapter “Getting Real
with APIs”

Taming the State in React, Chapter “Local State
Management”

https://www.robinwieruch.de/react-fetching-data

29

Different Kinds Of State

Application State (or Entity State)

• Retrieved from the back-end
• Should update the back-end

– on user-initiated CRUD actions

• Should “periodically” check for
updates
– caused by other users, by other open

sessions, or by connected systems

• Globally managed, accessible by
various components

Presentation State (or View State)

• Not stored in the back-end
– only in React

• Does not need to persist
• Lives and dies within the controlling

Component
• Implemented as Local State

– by using useState

Applicazioni Web I - Web Applications I - 2021/2022

30

Frequent Use Cases

• How to integrate remote HTTP APIs
• Where/when to load data from remote APIs?
• Delays and “loading…”
• Updating remote data

Applicazioni Web I - Web Applications I - 2021/2022

31

API Client Classes

• Recommendation: keep your fetch methods in a separate JS module
(e.g., API.js)

• Keeps details of HTTP methods inside the API module
– API should not depend on React or application state/props
– Application code should not call fetch or have any HTTP information

• Allows easy swapping with “stub” methods for testing

Applicazioni Web I - Web Applications I - 2021/2022

32

Conceptual Architecture

Applicazioni Web I - Web Applications I - 2021/2022

React Component

useState
useEffect

Event handlers

API.js

fetch()

Database
(SQLite, MySQL, ...)

DAO.js

Express web application

DOM

app.get/.post route

JSON/HTTP

React
Application

HTTP
API
Server

33

Rehydrating And Dehydrating

• Application State is retrieved via HTTP APIs
– e.g., from info stored in a DB and accessed through the HTTP API server

• Rehydrating the Application State means getting it from the HTTP APIs
– Must happen when the React application mounts
– Best place: inside a useEffect(fn, []) method

• Rehydrating should also happen when we want to “refresh” the state
– The React app cannot know whether others changed the info provided by the API server

• Dehydrating the Application State means extracting it from the React
application
– May happen several times during the React app execution
– Should happen whenever something (in the Application State) is modified

Applicazioni Web I - Web Applications I - 2021/2022

34

Rehydrating At Mount Time

• Very similar to what we saw
before…

• Rehydrating may require some
time, while the component
renders “empty” (with the initial
state)
– use the approach for handling slow

responses
– i.e., a loading/waiting local state

import { useEffect, useState } from 'react';

function ShoppingList() {
const [list, setList] = useState([]);
const [loading, setLoading] = useState(true) ;

useEffect(()=> {
const getItems = async () => {
const response = await fetch('/api/items');
const items = await response.json();
setList(items);
setLoading(false);

};
getItems();

}, []);

return (<>
{loading && 🕗}
{list.map((item, i) =>
<li key={i}>{item})}

</>);
}

Applicazioni Web I - Web Applications I - 2021/2022

35

Rehydrating To Refresh The State

• Once you know that something has been changed in the API server, you
can use useEffect() as before
– with one or more dependencies, e.g., [dep1, dep2]

• Beware: two problems might arise
– the "n-clients problem"
– infinite loops

Applicazioni Web I - Web Applications I - 2021/2022

Next slides

36

The “N-Clients Problem”

• We are creating a web application
that will be opened on multiple
browsers at once
– They read and write info from a unique

API server, however
• What happens in the web app

running in, e.g., Browser 1 when
Browser 3 updates something in the
API server?
– How can one web app know that

someone else changed something in
the server?

Applicazioni Web I - Web Applications I - 2021/2022

API server

Browser 3

Browser 2

Browser 1

Browser 4

37

The "N-Clients Problem"

The Better-Than-Nothing Solution
• The web app asks for data as

frequently as possible
– when it loads a new page/view
– after adding/updating/removing

something
– periodically (i.e., polling)
– …

• Not a solution: just a way to
minimize the problem

The Real Solution
• The server communicates changes

as soon as they appear
– to all the current consumers of its

information
• Out of scope for this course

– unfortunately!

• For the curious:
– WebSockets (e.g., https://socket.io)
– PubSub mechanisms

Applicazioni Web I - Web Applications I - 2021/2022

https://socket.io/

38

Infinite Loops with useEffect

• One of the main pitfalls that might happen with useEffect
– infinite loops both in rendering and in external (e.g., HTTP) calls
– especially when useEffect is used with useState

• Two significant cases:
1. The dependency array is missing, but it should not
2. One of the items in the dependency array is a JavaScript Object {} or Array []

Applicazioni Web I - Web Applications I - 2021/2022

Examples from: https://dmitripavlutin.com/react-useeffect-infinite-loop/

https://dmitripavlutin.com/react-useeffect-infinite-loop/

39

Example: Missing Dependencies

Applicazioni Web I - Web Applications I - 2021/2022

import { useEffect, useState } from 'react';

function CountInputChanges() {
const [value, setValue] = useState('');
const [count, setCount] = useState(-1);

useEffect(() => setCount((c) => (c + 1)));

const handleChange = (ev) => setValue(ev.target.value);

return (
<div>
<input type="text" value={value} onChange={handleChange} />
<div>Number of changes: {count}</div>

</div>);
}

What is wrong,
here?

40

1. Set Up Dependencies Correctly

• Without the dependency (no
dependency array), the code in the
example will re-render the
component forever

• It is also a clear error:
– the update of count depends on the

change of value

import { useEffect, useState } from 'react';

function CountInputChanges() {
const [value, setValue] = useState('');
const [count, setCount] = useState(-1);

useEffect(() => setCount((c) => (c + 1)), [value]);

const handleChange = ({ target }) =>
setValue(target.value);

return (
<div>
<input type="text" value={value}

onChange={handleChange} />
<div>Number of changes: {count}</div>

</div>);

}

Applicazioni Web I - Web Applications I - 2021/2022

41

Example: Objects as Dependencies

Applicazioni Web I - Web Applications I - 2021/2022

function CountSecrets() {
const [secret, setSecret] = useState({ value: "", countSecrets: 0 });

useEffect(() => {
if (secret.value === 'secret')
setSecret(s => ({...s, countSecrets: s.countSecrets + 1}));

}, [secret]);

const onChange = (ev) => { setSecret(s => ({ ...s, value: ev.target.value })); };

return (<div>
<input type="text" value={secret.value} onChange={onChange} />
<div>Number of secrets: {secret.countSecrets}</div>

</div>
);

What is wrong,
here?

42

2a. Avoid Objects As Dependencies

• Problem: secret as a dependency!
• Inside useEffect, when the input value

equals 'secret', setSecret() is called
• setSecret() increments the secrets

counter, but also creates a new object
– secret is now a new object, and the

dependency has changed

• So useEffect invokes again the callback
that updates the state, and a new secret
object is created again, etc.

• How to solve: do not use objects as
dependencies!

import { useEffect, useState } from 'react';

function CountSecrets() {
const [secret, setSecret] = useState({ value: "",

countSecrets: 0 });

useEffect(() => {
if (secret.value === 'secret')
setSecret(s => ({...s, countSecrets: s.countSecrets

+ 1}));
}, [secret.value]);

const handleChange = ({ target }) => { setSecret(s => ({
...s, value: target.value })); };

return (<div>
<input type="text" value={secret.value}

onChange={handleChange} />
<div>Number of secrets: {secret.countSecrets}</div>

</div>
);

Applicazioni Web I - Web Applications I - 2021/2022

43

2b. Avoid Arrays As Dependencies
import { useEffect, useState } from 'react';

function ShoppingList() {
const [list, setList] = useState([]);

useEffect(()=> {
const getItems = async () => {

const response = await fetch('/api/items');
const items = await response.json();
setList(items);

};
getItems();

}, []); // don’t use: [list]

return (
{list.map((item, i) => <li

key={i}>{item})}
);

}

• The same issue might happen
with arrays…

• … so, it is better to avoid arrays
as dependencies
– you can use an empty dependency

array []
– or an additional state to trigger
useEffect

– or any item in the array, the length
property (if appropriate), or …

Applicazioni Web I - Web Applications I - 2021/2022

44

Dehydrating During Updates
const addItem = async () => {
setList(items => [...items, element]);

const response = await fetch('/api/items', {
method: 'POST',
body: element,

});
...

};

return (...
<input type="text" value={element} ... }></input>
<button onClick={addItem}>Add</button>

...);

Applicazioni Web I - Web Applications I - 2021/2022

The two updates (remote API, local
state) run in parallel.

Optimistic state update: it assumes that
remote state will be updated without

errors => Risky!

45

Dehydrating During Updates – Alternative

Applicazioni Web I - Web Applications I - 2021/2022

const addItem = async () => {

const response = await fetch('/api/items', {
method: 'POST',
body: element,

});
if (response.ok)
setList(items => [...items, element]);

...
};

return (...
<input type="text" value={element} ... }></input>
<button onClick={addItem}>Add</button>

...);

The state is updated only after checking
that the request is successfully

=> No parallel updates!

Issue: the user of our app will not see
the just added item for a while…

46

During Updates: Dehydrate And Rehydrate
function ShoppingList() {

const [list, setList] = useState([]);
const [element, setElement] = useState('');

useEffect(()=> {
getItems();

}, []);

const getItems = async() => {
const response = await fetch('/api/items’);
const items = await response.json();
setList(items);

};

const addItem = async () => {
setElement('');
setList(items => [...items, `${element} (temp)`]);

const response = await fetch('/api/items', {
method: 'POST',
body: element,

});
if (response.ok)

getItems();
};

return (<>
{list.map((item, i) => <li key={i}>{item})}
<input type="text" value={element}

onChange={(ev)=>setElement(ev.target.value)}></input>
<button onClick={addItem}>Add</button>

</>
);

}

1. Update the state in parallel so
that the user can see that the
operation is completed

2. Mark the just updated item as
temporary
– e.g., by using a different

background color, label, … than the
others

3. Refresh the entire component
as soon as the server completes
the update operation

Applicazioni Web I - Web Applications I - 2021/2022

47

THE RULES OF HOOKS
Peeking Under the Hood

Applicazioni Web I - Web Applications I - 2021/2022

Full Stack React, “Appendix C: React Hooks”

React Handbook, chapter “Hooks”

https://reactjs.org/docs/hooks-rules.html

https://reactjs.org/docs/hooks-rules.html

48

Quiz

• What is the “magic” behind
useState?

• How can the same function
return different state variables?

• How can the values be persisted
across function calls?

Applicazioni Web I - Web Applications I - 2021/2022

function Example(props) {

[hidden, setHidden] = useState(true) ;
[count, setCount] = useState(0) ;
[mode, setMode] = useState('view') ;

. . .

setHidden(false) ;
. . .
setCount(c => c+1) ;
. . .
setMode('edit') ;
. . .

}

49

Answer

• React associates to each
functional component an array of
Hook “slots”
– Slots are stored with the function,

therefore they are persistent

• Each time you call a Hook, a new
“slot” is used
– The first time, it is created
– The other times, it is reused

Applicazioni Web I - Web Applications I - 2021/2022

function Example(props) {

[hidden, setHidden] = useState(true) ;
[count, setCount] = useState(0) ;
[mode, setMode] = useState('view') ;

. . .

setHidden(false) ;
. . .
setCount(c => c+1) ;
. . .
setMode('edit') ;
. . .

}

50

Corollary

• React must “know” which
functions may host Hooks

• Hooks must always be called in
the same order each time a
component renders

Applicazioni Web I - Web Applications I - 2021/2022

function Example(props) {

[hidden, setHidden] = useState(true) ;
[count, setCount] = useState(0) ;
[mode, setMode] = useState('view') ;

. . .

setHidden(false) ;
. . .
setCount(c => c+1) ;
. . .
setMode('edit') ;
. . .

}

51

Hook Usage Rules

• Only Call Hooks at the Top Level
– Always call Hooks at the top level of your React function
– Do not call Hooks inside loops, conditions, or nested functions

• Only Call Hooks from React Functions
– Do not call Hooks from regular JavaScript functions
– You may call Hooks from React function components
– You may call Hooks from custom Hooks

Applicazioni Web I - Web Applications I - 2021/2022

https://reactjs.org/docs/hooks-rules.html

https://reactjs.org/docs/hooks-rules.html

52

License
• These slides are distributed under a Creative Commons license “Attribution-NonCommercial-

ShareAlike 4.0 International (CC BY-NC-SA 4.0)”
• You are free to:

– Share — copy and redistribute the material in any medium or format
– Adapt — remix, transform, and build upon the material
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or
your use.

– NonCommercial — You may not use the material for commercial purposes.
– ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.
– No additional restrictions — You may not apply legal terms or technological measures that legally restrict

others from doing anything the license permits.
• https://creativecommons.org/licenses/by-nc-sa/4.0/

Applicazioni Web I - Web Applications I - 2021/2022

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

